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Abstract

This paper introduces a machine learning model as a univariate benchmark for real-time U.S. infla-

tion forecasting. The model uses a Random Forest regression framework and derives all predictive

inputs from engineered features. Using signal processing techniques, I extract the features from

past inflation dynamics. Evaluated over the volatile inflation period from 2020Q1 to 2024Q4, the

model reduces average forecast errors by about 14% relative to the Survey of Professional Forecast-

ers and performs competitively with standard univariate benchmarks, particularly at short- and

medium-term horizons. In addition, this paper shows that the Random Forest model provides eco-

nomically meaningful measures of forecast uncertainty and that the engineered features contribute

substantially to predictive accuracy. The results support including univariate machine learning

models in forecasting model suites, especially in periods of heightened inflation volatility.
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1 Introduction

In the realm of inflation forecasting, institutional forecasts have historically played the role of Goliath.1

Professional forecasters and policy institutions rely on extensive macroeconomic datasets, large-scale

structural models, and expert judgment to predict inflation. However, simple univariate time-series

models-those that rely solely on historical inflation data-have often been difficult to outperform (Stock

and Watson, 2007), as U.S. inflation exhibited strong persistence and relatively stable dynamics dur-

ing the Great Moderation. The pandemic period, however, introduced large supply and demand

shocks that generated persistent and unexpected inflationary pressures, challenging both complex in-

stitutional models and traditionally robust univariate benchmarks. Against this backdrop, this paper

evaluates a new univariate benchmark that applies statistical learning techniques to extract predictive

structure from inflation’s own history.

This paper develops a simple machine learning model for real-time inflation forecasting. By design,

it restricts the information set to inflation’s own history, providing a disciplined test of how much

predictive power can be extracted from inflation itself, without relying on large panels of macroeco-

nomic predictors or expert judgment. The model employs a Random Forest regression framework

and incorporates features engineered from historical inflation data using signal-processing techniques.

The analysis evaluates the model’s real-time forecasting performance in comparison to institutional

and established univariate benchmarks, explores the model’s forecast uncertainty, and examines the

relevance of the engineered features for determining the forecasts.

This paper’s contributions are threefold:

(1) Real-time forecast performance under fair conditions. The first contribution assesses

the real-time forecast performance of the Random Forest (RF) model relative to a set of standard

univariate time-series models and an institutional benchmark, namely the Survey of Professional

Forecasters (SPF). Under fair conditions, all models are evaluated using identical information sets,

and for the out-of-sample period from 2020Q1 to 2024Q4. Empirically, the RF reduces forecast errors

by on average 14% compared to the SPF across horizons. At horizons up to two quarters ahead, it

achieves substantial reductions in forecast errors relative to both benchmarks. The longer the horizons,

the less pronounced is the forecasting superiority of the RF, while it is still performing competitively

1This paper uses the David and Goliath legend purely as a metaphorical framework and without any religious senti-
ment.
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or on par with the benchmarks.

(2) Interpretable forecast uncertainty. The second contribution evaluates the quality and in-

terpretability of forecast uncertainty produces by the Random Forest relative to that of the SPF.

Uncertainty for the RF model is obtained directly from the distribution of individual tree forecasts,

while SPF uncertainty is proxied by the cross-sectional dispersion among professional forecasters. I

compute statistical measures that assess whether forecast uncertainty co-moves with actual inflation

volatility. Empirically, the RF provides economically meaningful and informative measures of forecast

uncertainty. Across forecast horizons, the RF forecast uncertainty correlates positively with realized

and forecast error volatility indicating that higher forecast dispersion coincides with greater funda-

mental and predictive uncertainty, respectively. In terms of all statistical measures, the SPF shows

less connection with uncertainty in the economic environment.

(3) Feature importance and interpretability. Finally, the paper examines the drivers behind

the Random Forest model’s predictive performance. Beyond producing accurate forecasts, Random

Forest regressions offer interpretability by quantifying how much each predictor contributes to the

model’s output. I assess feature relevance using Shapley values, which decompose individual fore-

casts into additive feature-level contributions and summarize each variable’s average marginal impact.

This analysis also serves as a robustness check of the feature-engineering approach—if the engineered

transformations are meaningful, they should yield consistently positive Shapley contributions across

horizons.

Empirically, the engineered features—capturing cyclical, spectral, and energy-based information from

inflation’s past—consistently enhance predictive performance. Short-term inflation persistence dom-

inates up to three quarters ahead, while medium-frequency cyclical and energy-related components

gain importance at longer horizons. This temporal shift in relevance shows that the model relies

on economically intuitive signals that evolve with the forecast horizon, confirming that the selected

transformations are both statistically useful and economically interpretable.

Taken together, these findings demonstrate that a minimalist, data-driven machine learning model

relying solely on inflation’s own history can match or even exceed the real-time forecasting performance

of institutional benchmarks and standard univariate models. The Random Forest framework provides

economically meaningful measures of uncertainty, while the feature-importance analysis confirms the

economic validity of the feature-engineering design and its link to the model’s predictive power.
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Literature. This paper relates to the rapidly growing body of research that applies machine learning

(ML) methods to forecast inflation in real time, with the seminal study by Medeiros, Vasconcelos,

Veiga, and Zilberman (2021) marking the foundation of this literature. Existing studies differ primarily

along two dimensions: (i) the choice of ML algorithm and (ii) the construction and richness of the

underlying feature set.

Regarding the forecasting algorithms, most studies compare the predictive capabilities of a wide range

of ML approaches. Medeiros et al. (2021) examine an extensive suite of models encompassing regu-

larized linear estimators (such as variants of LASSO and ridge regression), factor-based and ensemble

methods (including factor models, bagging, boosting, and model averaging), as well as nonlinear learn-

ers like tree-based algorithms and neural networks. Naghi, O’Neill, and Danielova Zaharieva (2024)

extend this framework by incorporating advanced tree-based and Bayesian ensemble methods, together

with support vector regressions (SVR) and neural networks of varying architectures. Similarly, Araujo

and Gaglianone (2023) evaluate a broad set of 50 forecasting methods across 501 macroeconomic time

series. Across these comparisons, the RF consistently emerges as one of the most accurate and robust

models in terms of mean squared forecast errors. Building on this evidence, the present study focuses

exclusively on the RF as a benchmark ML forecaster.

A second major source of heterogeneity in the literature lies in the construction of predictor variables.

Most studies employ large macroeconomic datasets that undergo regularization, factor extraction, or

shrinkage to reduce dimensionality and multicollinearity. Notably, Medeiros et al. (2021) expand a

dataset of 122 macroeconomic indicators by including principal component factors and up to four

lags for each variable, resulting in 508 potential predictors. Naghi et al. (2024) further enlarge this

framework by incorporating additional variables and extending the analysis to the United Kingdom

and Canada.

While recent research increasingly incorporates novel information sources—such as text-based indica-

tors or high-frequency financial variables—this paper adopts a deliberately minimalist approach: The

present study relies exclusively on inflation vintages, intentionally excluding external predictors or

auxiliary macroeconomic series. Instead, I extract predictive information directly from the inflation

process through systematic transformations. This approach represents, to my knowledge, the first

explicit application of feature engineering in a macroeconomic forecasting context.2 The combination

2A related exception is Verona (2025), who employ wavelet-based decompositions to extract frequency-domain infor-
mation from macroeconomic time series—an approach conceptually akin to feature engineering, although not explicitly
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of feature engineering with a simple machine learning model reflects the idea that forecasting accuracy

depends not only on algorithmic sophistication but also on the construction and representation of the

underlying data (Verdonck, Baesens, Óskarsdóttir, and vanden Broucke, 2024).

The remainder of the paper is organized as follows. Section 2 outlines the econometric framework,

including the Random Forest and feature-engineering approach, while Section 3 details the data and

training design. Sections 4–6 present results on forecasting performance, uncertainty, and feature

relevance, respectively. Section 7 concludes.

2 Econometric Framework

The baseline forecasting framework relates the h-step-ahead inflation rate to a model-based mapping

of the information available at time t,

πt+h = M(h)(Xt) + εt+h, t = 1, . . . , T − h, h = 1, . . . ,H, (1)

where inflation is defined as the quarter-over-quarter percentage change in the annualized price level,

πt ≡ 100 [lnPt − lnPt−1]. The function M(h)(·) denotes a horizon-specific forecasting model that

generates a prediction of πt+h using the predictor set Xt observed at time t. The term εt+h is the

corresponding h-step-ahead forecast error.

Forecast accuracy is evaluated using the root mean squared error (RMSE) and mean absolute error

(MAE), both computed using strictly out-of-sample forecast errors ε̂s+h,

RMSE(h) =

√
1

Nh

∑

s

ε̂2s+h MAE(h) =
1

Nh

∑

s

∣∣ε̂s+h

∣∣

where the summation is taken over all forecast origins s such that the realized value πs+h is avail-

able. The RMSE is the appropriate loss function when the model targets the conditional mean of

πt+h, whereas the MAE is the proper choice when the conditional median is the object of prediction.

Following Fulton and Hubrich (2021), I report both metrics to provide a robust assessment of model

performance.

labeled as such.
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2.1 Random Forests

In this application, the baseline M(h) takes the form of a random forest regression, denoted by RF(h).

Random forests are an ensemble learning method that combines decision trees with bagging, originally

introduced by Breiman (2001). Decision trees use a tree structure to identify a variable’s future value

by imposing sensible splits on its observation values. The tree structure leads to a predicted value

at its final leaf nodes. Bagging (Bootstrap Aggregating) involves fitting multiple decision trees on

bootstrapped subsets of the original training data. The resulting ensemble of bagged decision trees

forms the random forest, which simply averages the individual trees’ predictions. While stand-alone

decision trees fit the training data well, the bagging step enhances the forecasting performance and

prevents overfitting by not only training on randomized data subsets but also by inducing randomness

in the choice of variables and splits for each individual tree.

x = [x1, x2, x3, . . .]

x2 ≤ τ
(1)
2

x1 ≤ τ
(1)
1 ŷ

(1)
B

yes no

ŷ
(1)
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(1)
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ŷ(1)
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ŷ
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ŷ
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(2)
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(3)
C

yes no
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T

∑T

t=1
ŷ(t)

Figure 1: Schematic representation of a Random Forest.

Notes: The feature vector x = [x1, x2, x3, . . . ] serves as the common input to an ensemble of regression trees (Tree 1–3).

Each tree recursively partitions the feature space through binary splits of the form xj ≤ τ
(t)
j until reaching terminal nodes

that yield local predictions, e.g., ŷ(t)A in Tree 1. The overall forecast is the average across all T trees, ŷ = 1
T

∑
t = 1T ŷ(t).

Figure 1 provides a schematic illustration of how a random forest produces a forecast. The input vector

x enters multiple decision trees, each of which operates on a randomly selected subset of predictors.

In practice, hundreds of trees are typically grown, though the figure displays only three for clarity.

Within each tree, the data are recursively split according to learned threshold criteria τi, producing
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branches corresponding to binary decisions (e.g., “yes” or “no”). This hierarchical splitting continues

until a terminal leaf node is reached, where the tree assigns a forecast value ŷ(i). During training,

the algorithm determines both the optimal split criteria and the resulting leaf predictions based on

a loss-minimization principle. Once all trees are trained, the random forest aggregates the individual

predictions by simple averaging, yielding the final forecast ŷ = 1
T

∑T
i=1 ŷ

(i).

Random forests are the only machine learning method used in this paper for four main reasons. First,

they have consistently demonstrated competitive performance in macroeconomic forecasting compared

to more complex models, such as neural networks and boosting variants (Medeiros et al., 2021; Naghi

et al., 2024). Second, they can be efficiently trained, cross-validated, and deployed on standard

computing hardware, eliminating the need for high-performance clusters or GPU acceleration. This

enhances both accessibility and reproducibility.

Third, random forests provide a relatively high degree of interpretability. Unlike deep learning archi-

tectures, they allow researchers to trace predictions back to their underlying structure and assess the

relative importance of different predictors (see Section 6). This transparency is particularly valuable

in economic forecasting, where understanding the factors driving predictive performance can be just

as important as achieving accuracy.

Finally, random forests have inspired dedicated extensions designed for economic forecasting appli-

cations, such as hedged random forests (Beck, Kozbur, and Wolf, 2024). These extensions optimize

forecast combination weights rather than relying on uniform averaging. They have proven effective

in recent inflation forecasting applications (Beck and Wolf, 2025), highlighting the adaptability and

ongoing relevance of random forests in this domain.

2.2 Benchmark models

To benchmark the forecasting performance of the Random Forest models, I estimate a set of standard

univariate time-series models. For each forecast horizon h, a separate model is estimated using only

information available at the forecast origin t, following a direct forecasting approach. The benchmark

set includes a random walk (RW), an autoregressive (AR) model, an autoregressive moving average

(ARMA) model, and an autoregressive integrated moving average (ARIMA) model.

The choice of benchmarks follows the canonical forecasting setup in Medeiros et al. (2021) and the
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univariate tradition in Stock and Watson (2007). The ARMA-type models require selecting hyper-

parameters (p, q,D), where p denotes the autoregressive lag order, q the moving-average lag order,

and D the degree of differencing. These are chosen by minimizing the Bayesian Information Criterion

(BIC).

Hyperparameter selection is initially conducted using the final inflation series introduced in Section 3.

For comparability with the Random Forest setup, all benchmark models are subsequently re-estimated

in a fully real-time, expanding-window fashion: at each forecast origin t, estimation is based exclusively

on inflation observations that would have been available at that time.

RW (random walk): as a näıve and deliberately “light-learning” but very well established bench-

mark, the forecast is given by the rolling four-quarter average of past inflation for any h ≥ 1,

π̂RW
t+h|t =

1

4

3∑

j=0

πt−j . (2)

AR(p): as a standard benchmark capturing autoregressive persistence, I estimate for each horizon h

a direct autoregressive model,

πs+h = α(h) +

p∑

j=1

ϕ
(h)
j πs−j+1 + u

(h)
s+h, s = p, . . . , t− h. (3)

This specification defines a direct autoregressive forecasting model of order p for horizon h. The

parameter α(h) is a horizon-specific intercept, and ϕ
(h)
j are the corresponding autoregressive coefficients.

The term u
(h)
s+h represents the forecast error at horizon h, assumed to be a mean-zero innovation.

The h-step-ahead forecast then is

π̂AR
t+h|t = α̂(h) +

p̂(h)∑

j=1

ϕ̂
(h)
j πt−j+1. (4)

ARMA(p, q): allowing for moving-average dynamics under stationarity, I estimate a direct autore-

gressive moving average model of order (p, q) for forecast horizon h

πs+h = α(h) +

p∑

j=1

ϕ
(h)
j πs−j+1 + u

(h)
s+h +

q∑

k=1

θ
(h)
k u

(h)
s−k+h, s = max(p, q), . . . , t− h, (5)
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The moving average component is captured by coefficients θ
(h)
k applied to past forecast errors u

(h)
s−k+h

for k = 1, . . . , q. The forecast then is

π̂ARMA
t+h|t = α̂(h) +

p̂(h)∑

j=1

ϕ̂
(h)
j πt−j+1 +

q̂(h)∑

k=1

θ̂
(h)
k û

(h)
t−k+h. (6)

ARIMA(p, d, q): to allow for differenced dynamics, I extend the ARMA specification by integration

through differencing and estimate

(1− L)d
(h)

πs+h = α(h) +

p∑

j=1

ϕ
(h)
j (1− L)d

(h)
πs−j+1 + u

(h)
s+h +

q∑

k=1

θ
(h)
k u

(h)
s−k+h, (7)

where the operator (1 − L)d
(h)

applies d(h)-order differencing to the inflation series, where L denotes

the lag operator (Lπt = πt−1). The dependent variable (1 − L)d
(h)

πs+h is therefore the d(h)-times

differenced h-step-ahead inflation rate. The conditional mean forecast π̂ARIMA
t+h|t is obtained from the

estimated model and, if d(h) = 1, reintegrated back to the level of π.

2.3 Feature Engineering

The machine learning literature distinguishes between the data set and the feature set. While the data

set comprises raw observations, the feature set consists of transformed variables-called features-that

serve as inputs to the forecasting model. The process of transforming the raw data set into a more

informative feature set is called feature engineering. In principle, one could provide a machine learning

model with only raw data and rely on it to extract relevant relationships internally. However, empirical

studies suggest that omitting feature engineering often leads to inferior forecasting performance (see

e.g., Guyon and Elisseeff (2006); Oliveira and Torgo (2015)).

Although the terminology feature engineering may seem unfamiliar in the context of economic fore-

casting, the practice itself is not new. Economists have long engineered features—often implicitly—by

constructing transformations such as rolling means, variances, growth rates, or detrended components

to summarize dynamics and reveal latent structure. Such transformations enrich the information set

by highlighting persistent trends, cyclical movements, or volatility episodes. In practice, feature en-

gineering is often ad hoc and driven by domain expertise. In this paper, feature engineering is made

explicit and systematic, serving as a structured bridge between economic time series behavior and the
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learning capabilities of machine learning models.

The random forest models RF(h) developed in this paper rely exclusively on features engineered from

past inflation dynamics. This approach is deliberately orthogonal to the prevailing practice in the

machine learning and economic forecasting literature, where models are typically trained on large-scale

datasets with dozens or even hundreds of macroeconomic and financial predictors, often embedded

within increasingly complex architectures such as deep neural networks or hybrid ensembles. Instead,

the goal here is to extract the maximum predictive content from the univariate inflation series alone,

using systematic feature engineering to compensate for the absence of additional covariates.

Accordingly, this paper does not seek to demonstrate incremental gains from ever-growing pools of

predictors or from the adoption of more computationally intensive learning architectures. Rather, it

asks a more fundamental question: how much forecasting performance can be recovered by combining

classical time-series intuition with modern machine learning techniques in a purely univariate setting?

In this sense, the proposed model serves as a machine-learning-based univariate benchmark, designed

to test the upper bound of what inflation’s own past can reveal when processed through a carefully

constructed feature space and a flexible, nonlinear prediction algorithm.

Since the relationship between these engineered features and future inflation is unknown a priori,

machine learning provides a natural framework to detect and exploit complex, possibly non-linear

dependencies. Random forests, in particular, offer an additional interpretive advantage: after training,

they assign relative importance weights to each feature, quantifying its contribution to predictive

accuracy. Unlike automated feature engineering pipelines that generate vast numbers of candidate

variables—often leading to high-dimensional feature spaces and overfitting risks (Cerqueira, Moniz,

and Soares, 2024)—the proposed approach keeps the feature set compact and interpretable. Positive

feature importance weights indicate that a variable materially improves forecast precision, while near-

zero or negative weights suggest redundancy or noise. Section 6 discusses these importance weights

in detail and validates the relevance of the engineered features for capturing the dynamics of U.S.

inflation.

The choice of transformations in this paper is grounded in signal processing, which has gained in-

creasing prominence as a powerful framework for time series forecasting. As noted by Praveen, Dekka,

Sai, Chennamsetty, and Chinta (2025), “integrating signal processing techniques into forecasting mod-

els can improve their accuracy, adaptability, and robustness to various market conditions and data
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characteristics.” A growing body of empirical work supports this view, showing that decompositional

and spectral representations can extract latent structure that is otherwise difficult to detect in raw

time-domain data. For example, De Brabandere, Robberechts, Op De Beéck, and Davis (2019) em-

ploy energy measures, energy ratios, Fast Fourier Transforms (FFT), power spectral density, and

related spectral indicators to classify time series dynamics, while Shu and Gao (2020) and others

demonstrate that Empirical Mode Decomposition (EMD) serves as an effective preprocessing step for

enhancing predictive performance in neural network-based stock price forecasting. Consistent with

this literature, I assume that inflation dynamics can be decomposed into distinct components—such

as trend, cycles, and volatility patterns—which provide complementary predictive information. By

systematically engineering features that capture these dimensions, the forecasting model can access a

richer signal representation than is available from raw inflation levels alone. Inflation is a process that

combines persistent components, cyclical fluctuations, and occasional shock-driven surges—making it

particularly well-suited to decomposition-based feature engineering.

Figure 2 illustrates the feature engineering pipeline applied to past inflation data. Starting from a

rolling window of recent inflation observations (shaded in gray), the signal is decomposed into in-

trinsic mode functions (IMFs) using Empirical Mode Decomposition (EMD), transformed using the

Hilbert–Huang Transform (HHT) to extract instantaneous amplitudes and phases, analyzed via the

Short-Time Fourier Transform (STFT) to quantify frequency-specific band powers, and evaluated

using the Teager–Kaiser Energy Operator (TKEO) to capture localized energy or volatility. These

complementary representations summarize distinct aspects of the inflation signal’s dynamics. Statisti-

cal summaries derived from each transformation form the engineered feature vector Xω, which serves

as part of the input to the machine learning forecasting model.

I split the full predictor vector into three components:

Xt = (πt, πt−1,Xω) ,

where (πt, πt−1) denote the last two inflation lags. Since inflation exhibits strong persistence, autore-

gressive dynamics contain useful predictive content, justifying their inclusion. The engineered feature

vector Xω is constructed from a rolling window of ω = 20 past observations πt, . . . , πt−ω and consists
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Figure 2: Schematic representation of feature engineering.

Notes: A rolling window of the inflation series (gray-shaded area) is decomposed into intrinsic mode functions (IMF 1–3)
using Empirical Mode Decomposition (EMD). From these components, the Hilbert–Huang Transform (HHT) extracts
instantaneous amplitudes and phases, while the Short-Time Fourier Transform (STFT) computes average band powers
over selected frequency ranges (0.05–0.15 and 0.15–0.30 cycles per quarter). The Teager–Kaiser Energy Operator (TKEO)
captures localized energy and volatility dynamics. Together, these transformations generate the engineered feature vector
Xω used as input to the Random Forest forecasting model.

of three sets of transformations derived from signal processing techniques:

Xω =




FHHT(πw) = [A(IMF1),Φ(IMF1), A(IMF2),Φ(IMF2), A(IMF3),Φ(IMF3)] ,

FSTFT(πw) = [P0.05−0.15, P0.15−0.30],

FTKEO(πw) = [E(πw), E(IMF1), E(IMF2)]



. (8)

The first feature set, FHHT(πw), is derived from the first three IMFs obtained via EMD, which decom-

pose the window into oscillatory components ordered from high to low frequency. The Hilbert–Huang

Transform then computes instantaneous amplitudes A and phases Φ, which capture the strength and

position of each cycle in time.

The second feature set, FSTFT(πw), captures how short- and medium-run cycles contribute to the
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windowed signal. Applying the STFT produces a spectrogram, from which average band powers are

extracted over economically relevant frequency intervals. I retain only the medium- and high-frequency

ranges, (0.05–0.15) and (0.15–0.30) cycles per quarter, as the low-frequency bandpower does not inform

short- to medium-horizon inflation forecasts.

The final feature set, FTKEO(πw), evaluates the signal’s instantaneous energy using the TKEO op-

erator, which is sensitive to local bursts and shocks. I compute mean energy values for the original

window and its first two IMFs to detect volatility or sudden changes in inflation dynamics.

With the feature vector Xω defined, I now turn to how these inputs are used within the Random

Forest regression framework for inflation forecasting.

3 Training the Random Forest Model

3.1 Inflation Data and Forecast Benchmarks

Final inflation is measured as the quarter-over-quarter percentage change in the personal consump-

tion expenditure (PCE) price index, published by the Bureau of Economic Analysis under the code

DPCERG.3 This chain-type index is the Federal Open Market Committee’s targeted inflation measure

and serves as the policy-relevant benchmark (Fulton and Hubrich, 2021). The series is expressed at

an annualized rate and the June 2025 release provides the reference for forecast evaluation.

For real-time forecasting, I use vintage versions of PCE inflation from the ArchivaL Federal Reserve

Economic Data (ALFRED) as of June 2025.4 Multiple releases within a quarter are averaged to create

a single observation, and growth rates are computed as for the final series. The vintage sample period

ranges from 2000Q3 to 2025Q1, yielding 98 quarterly observations. Given that the feature engineering

described in Section 2.3 relies on a rolling-window of inflation, with a window size of five years, i.e. 20

quarters, the forecast evaluation sample starts in 2005Q1 to allow for lagged predictors. This reduces

the sample to 80 quarterly observations.

To compare the forecasting performance of the RF relative to other models and institutional bench-

marks, the natural choices to do so are the Survey of Professional Forecasters and the Tealbook pro-

3The data is available through the Federal Reserve Economic Data under the following link: https://fred.

stlouisfed.org/series/PCEPI.
4The data is obtained from ALFRED under the following link: https://alfred.stlouisfed.org/series?seid=

PCEPI.
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jections. The Survey of Professional Forecasters is hosted by the Federal Reserve Bank of Philadelphia

und provides quarterly PCE inflation forecasts at horizons of one to six quarters ahead.5 Forecasts

are expressed in annualized growth rates and correspond to the end of each quarter. I align SPF

release dates with the real-time targets and restrict the sample to overlapping periods. This produces

a benchmark series that is directly comparable to the Random Forest forecasts.

The Tealbook projections are published with a lag of five years. As the focus of this paper is the

volatility inflation period after 2020Q1, Tealbook projections cannot serve as an additional institutional

benchmark. After having introduced data sources and forecast benchmarks, I now specify how I train

the random forest model.

3.2 Training and Testing Sets

I adopt an expanding-window training approach. For a given quarter t, the model is trained on all

observations up to t, using the engineered features derived from the corresponding rolling window.

The model is then used to predict inflation at horizon t + h. In the next period, once new inflation

data become available, the training set expands to include this information and the model is retrained.

This recursive re-estimation process reflects how a real-time forecasting system would be updated with

each new data release.

A key objective of this paper is to evaluate forecasting performance under conditions that closely

replicate real-time forecasting. This is particularly important in the period following 2020, when

inflation dynamics exhibited extreme uncertainty. After the sharp contraction in 2020Q1, it was

unclear whether inflation would remain subdued or reaccelerate. Similarly, during the post-2021

inflation surge, policymakers and economists debated whether the spike was temporary or persistent.

Any learning algorithm that is trained on future observations belonging to these shock episodes would

benefit from knowledge unavailable to real-time forecasters, thereby introducing a so-called ”look-

ahead bias” or ”data leakage”. To ensure that the Random Forest faces the same informational

constraints as professional forecasters, the model is trained only on data available up to each forecast

origin.

Unlike traditional machine learning workflows that rely on distinct training, validation, and testing

5The data for the SPF forecasts can be obtained from the Federal Reserve Bank of Philadel-
phia’s website under https://www.philadelphiafed.org/surveys-and-data/real-time-data-research/

survey-of-professional-forecasters.
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splits, Random Forests internally perform validation through bootstrapped sampling, which makes

an explicit validation set unnecessary. However, a genuine testing set is preserved by evaluating

forecasts only on future observations not included in the training set. This setup ensures that forecast

performance is assessed truly out-of-sample and that comparisons with institutional benchmarks, such

as the SPF, are conducted under equivalent information conditions.

Each forecast horizon h = 1, . . . ,H is modeled using a separate Random Forest regression, following

a direct forecasting strategy as in Beck et al. (2024). This specification allows the model to learn

horizon-specific relationships between engineered features and future inflation, recognizing that the

predictive relevance of short-run fluctuations, medium-frequency dynamics, or local volatility may

differ depending on how far ahead the forecast is made.

To ensure that each Random Forest model learns a generalizable relationship between the engineered

features and future inflation, the training data are constructed from randomly drawn periods rather

than sequential time blocks. This prevents the model from simply memorizing the temporal structure

of the data. In addition, a small amount of noise is added to each feature to avoid overfitting and to

reinforce robustness. Both steps ensure that the RF model receives only information that would have

been available in real time and cannot exploit unintended time-series regularities. For each cut-off

date Tc, the training dataset of size N = 100 is generated as follows:

1. Randomly draw a period index ti from the real-time sample, excluding the most recent ω = 20

observations prior to the cut-off date Tc.

2. Construct a window of real-time PCE inflation data ending at ti and engineer features using the

procedure described in Section 2.3.

3. Augment the engineered feature vector with the last two available lags of inflation, πti and πti−1.

4. Add noise from a normal distribution with variance 1× 10−4 to each feature to enhance robust-

ness.

5. Pair the resulting feature vector Xi with the corresponding final revised value of PCE inflation

h periods ahead, denoted by yi, to form a training observation (Xi, yi).

With the training samples (Xi, yi) constructed for each forecast horizon and cut-off date, I now turn

to the estimation of the Random Forest models and their diagnostic evaluation.
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3.3 Training, Tuning, and Diagnostics of Random Forest Models

The Random Forest models are estimated on the training data set. Another advantage of RF models

is that they do not require the user to manually specify hyperparameters. Instead, hyperparameters

are automatically optimized during training, in contrast to neural networks, where tuning can be an

iterative complex and computationally intensive process. In this application, two hyperparameters

are subject to optimization: the minimum leaf size and the number of learners. The minimum leaf

size controls the minimum number of observations contained in each terminal node of a decision tree,

influencing the granularity of the splitting structure. The number of learners determines the size

of the ensemble, with larger forests typically improving predictive accuracy at the cost of increased

computational time.

Hyperparameter optimization is conducted during estimation using 5-fold cross-validation. For each

candidate combination of hyperparameters, the training sample is partitioned into five folds. The

model is then estimated five times, each time using four folds for training and one fold for validation,

rotating the validation fold in each iteration. The cross-validation root mean squared error (RMSE) is

computed for each round and averaged across folds. The hyperparameter combination that minimizes

the average RMSE is selected.

Figure 3 reports the Out-of-Bag (OOB) mean squared forecast error as a function of the number of

decision trees for the most recent information vintage. Across all horizons, the OOB error declines

sharply as more trees are added, before stabilizing at a plateau. The vertical red line indicates the

number of trees minimizing the OOB error, beyond which adding further learners yields negligible

gains in predictive performance. While most horizons exhibit smooth convergence, the model for

h = 5 displays some initial volatility in OOB error before settling, suggesting greater variability in

feature relevance at this horizon. Overall, the convergence patterns confirm that the RF models reach

stable prediction accuracy after a sufficiently large number of learners.

To verify that the trained models rely on economically meaningful inputs rather than noise, I later

analyze the stability and relevance of feature importance rankings across horizons in Section 6. Before

turning to this interpretability analysis, however, it is essential to first establish whether the Random

Forest models deliver competitive forecasting accuracy. The next section therefore evaluates their

predictive performance relative to traditional univariate benchmarks and institutional forecasts.
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Figure 3: Out-of-Bag (OOB) mean squared forecast error as a function of the number of decision trees for each
forecast horizon (h = 1, . . . , 8)

Notes: Each panel shows how prediction error evolves as more trees are added to the Random Forest ensemble. The OOB
error declines rapidly with additional trees before stabilizing at a plateau, indicating convergence of forecast accuracy.
Vertical red lines mark the number of trees minimizing the OOB error, beyond which further learners yield negligible
improvements.

4 Forecasting Performance

This section evaluates the forecasting performance of the RF model relative to both univariate time-

series benchmarks and institutional forecasts. The out-of-sample period begins in 2020Q1 and ends

in 2024Q4.

Table 1 summarizes the model performance by computing summary statistics that give a first im-

pression of how the RF model’s forecasting abilities compare to those of univariate and institutional

benchmarks. The average RMSE and MAE values indicate that the AR model performs best overall,

achieving the lowest average forecast errors across horizons (RMSE = 1.95, MAE = 1.36). It also

records the highest number of horizon-specific wins (3 for RMSE and 4 for MAE). The Random For-

est model ranks closely behind (avg. RMSE = 2.14, MAE = 1.52), outperforming both institutional

(SPF) and ARIMA-type models in terms of average accuracy, and achieving three horizon wins in

both RMSE and MAE. While the SPF exhibits relatively stable performance with the lowest disper-
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sion (std. RMSE = 0.11), it consistently remains outperformed by RF and AR in terms of absolute

accuracy. The Random Walk model provides moderate results, with one win in each metric, while

ARMA and especially ARIMA tend to show weaker average performance, with ARIMA ranking last

in both average RMSE and MAE and exhibiting higher variability. Overall, the results confirm the

strong and robust performance of RF relative to institutional and ARIMA-type benchmarks, though

the parsimonious AR model remains a competitive and consistent univariate baseline.

Table 1: Summary statistics of model performance across horizons (OOS period)

Average Maximum Minimum # Horizons Best Std. Dev.

Model RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE

RF 2.14 1.52 2.99 2.58 1.21 1.05 3 3 0.70 0.49
SPF 2.48 1.74 2.56 1.79 2.22 1.66 0 0 0.11 0.04
RW 2.15 1.55 2.51 1.81 1.67 1.27 1 1 0.32 0.20
AR 1.95 1.36 2.14 1.47 1.69 1.23 3 4 0.18 0.08
ARMA 2.10 1.49 2.34 1.60 1.88 1.40 0 0 0.17 0.07
ARIMA 2.35 1.66 2.68 1.84 1.83 1.29 1 0 0.30 0.20

Note: “# Horizons Best” counts the number of horizons (out of 8) for which the model achieves the lowest RMSE or
MAE (ties allowed). All statistics are computed over the out-of-sample period.

Building on this first impression, forecast accuracy is compared across horizons using pairwise RMSE

and MAE ratios, where each entry reports the relative error of the row model to that of the column

model. Ratios below unity therefore indicate that the row model is more accurate. In addition, I

formally assess statistical differences in predictive accuracy using the Diebold–Mariano test (Diebold

and Mariano, 2002), incorporating the Harvey–Leybourne–Newbold (HLN) small-sample adjustment

(Harvey, Leybourne, and Newbold, 1997) and Newey–West autocorrelation-robust variance estimation

(Newey and West, 1987). The RMSE ratios are displayed in Table 2.

Overall, the results indicate strong predictive performance of the RF model, particularly at short-

and medium-term horizons. Across most horizons up to six quarters ahead, the RF model typically

outperforms the institutional benchmark provided by the Survey of Professional Forecasters, often by

substantial margins. In several cases, the RF cuts the forecasting error by more than 50% compared

with the SPF. In comparison with univariate benchmarks such as the random walk, AR, ARMA, and

ARIMA models, the RF generally performs competitively or better, especially in the short run. While

performance differences become smaller or more mixed at longer horizons (seven to eight quarters

ahead), the RF remains broadly comparable to or better than the majority of univariate alternatives.

Nonetheless, given the limited size of the out-of-sample evaluation window, statistical significance is
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difficult to establish consistently.

Turning to specific horizons, the results are especially favorable in the short run. At h = 1, the RF

nearly halves the error of the SPF benchmark and performs on par with the random walk and AR

models, while reducing the RMSE by up to 13% relative to ARIMA. Averaged across all benchmarks,

the reduction is approximately 15%. At h = 2, the RF again markedly outperforms the SPF with a

reduction of around 65% in RMSE, although it is around 7% worse than the random walk. Still, it

improves on AR by roughly 4%, ARMA by 25%, and ARIMA by 56%, corresponding to an average

reduction of around 29% across all benchmarks. These results highlight the particular strength of the

RF at short forecast horizons.

At medium horizons, performance remains favorable. At h = 3, the RF reduces the error by 30%

compared to the SPF, though it slightly underperforms the AR model by about 6%. On average, the

RMSE declines by about 9%. At h = 4, the RF still outperforms all benchmarks, cutting the SPF

error by roughly 34% and the AR by around 2%. The reduction relative to ARMA reaches 25% and

is statistically significant.

At h = 5, the RF shows clear gains relative to SPF, ARMA, and ARIMA (with ratios around 0.5),

resulting in an average reduction of around 33%. At h = 6, the reductions are even more pronounced:

the RF lowers the RMSE by approximately two thirds when compared with SPF and ARIMA, and

remains superior to RW, AR, and ARMA. The average reduction at this horizon is around 38%. At

longer horizons, a more nuanced picture emerges.

At h = 7, performance becomes mixed: the RF outperforms SPF by around 32% but exhibits sub-

stantially larger forecast errors than ARIMA (by nearly 88%). On average, the RF produces a 17%

increase in RMSE at this horizon. At the longest horizon of h = 8, performance is again mixed. The

average RMSE reduction across benchmarks is around 5%, with the RF being roughly on par with

SPF, slightly worse than AR, but outperforming ARIMA by more than 50%.

Overall, the results indicate that while forecasting accuracy deteriorates uniformly across models at

longer horizons, the RF remains competitive and continues to perform well in relative terms against

more complex univariate benchmarks such as ARIMA.

Although the Random Forest achieves economically large reductions in forecast errors—sometimes ex-

ceeding 50% relative to the SPF—these improvements are not always statistically significant according
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Table 2: RMSE Ratios of Random Forest (RF) Relative to Benchmark Models

Benchmark Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

SPF 0.47 0.35 0.70 0.66 0.50 0.32 0.68 0.99
RW 1.00 1.07 0.94 0.88 0.93 0.81 1.05 1.05
AR 0.98 0.96 1.06 0.98 1.01 0.93 1.17 1.14
ARMA 0.94 0.75 0.98 0.75 0.47 0.73 1.05 1.02
ARIMA 0.87 0.44 0.88 0.59 0.42 0.32 1.88 0.47

Notes: Each entry reports the ratio of the root mean squared error (RMSE) of the Random Forest (RF) model to that
of the benchmark model, i.e. RatioRF,j = RMSERF

RMSEj
. Values below one indicate that the RF outperforms the benchmark

(lower forecast error), while values above one indicate inferior performance. Bold numbers denote statistically significant
differences in predictive accuracy according to the Diebold–Mariano test at the 5% level. Horizon h refers to the number
of quarters ahead being forecasted.

to the Diebold–Mariano test. This reflects the limited length and volatility of the out-of-sample eval-

uation period, which reduces the power of formal significance tests even in the presence of substantial

economic gains.

Table 3: MAE Ratios of Random Forest (RF) Relative to Benchmark Models

Benchmark Model h = 1 h = 2 h = 3 h = 4 h = 5 h = 6 h = 7 h = 8

SPF 0.54 0.47 0.59 0.61 0.51 0.43 0.79 0.81
RW 1.01 1.08 0.89 0.86 0.82 0.90 1.31 0.87
AR 1.00 0.90 0.97 0.97 0.83 0.93 1.54 0.99
ARMA 0.90 0.69 0.92 0.72 0.41 0.71 1.42 0.89
ARIMA 1.02 0.52 0.80 0.49 0.51 0.35 2.17 0.60

Notes: Each entry reports the ratio of the mean absolute error (MAE) of the Random Forest (RF) model to that of
the benchmark model, i.e. RatioRF,j = MAERF

MAEj
. Values below one indicate that the RF achieves lower forecast errors

than the benchmark (better performance), while values above one indicate higher forecast errors. Horizon h refers to the
number of quarters ahead being forecasted. Bold numbers can denote statistically significant differences in predictive
accuracy according to the Diebold–Mariano test at the 5% level.

The MAE ratios reported in Table 3 confirm the same qualitative patterns observed under the RMSE

metric. In particular, the RF model delivers sizeable performance gains at short horizons, cutting MAE

relative to the SPF by roughly 45–55% at h = 1 and h = 2, while remaining broadly competitive with

the univariate benchmarks, especially AR and RW. At medium-term horizons (h = 3 to h = 6), the

RF continues to outperform SPF and maintains lower or comparable MAE levels than the univariate

models, often achieving 20–40% reductions relative to ARMA and ARIMA. At longer horizons (h = 7

and h = 8), performance becomes more mixed: although the RF still tends to outperform SPF, it

occasionally underperforms relative to ARIMA and, to a lesser extent, RW and AR. Nonetheless, even

at these horizons the RF frequently remains within a competitive range of the strongest univariate

benchmarks. Overall, the MAE-based comparisons reinforce the conclusion from the RMSE analysis

that the RF model exhibits robust short- and medium-horizon advantages, with only limited and
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horizon-specific deterioration in relative accuracy at longer forecast horizons.

5 Forecast Uncertainty

A key criterion for evaluating a forecasting model is not only how accurately it predicts future out-

comes, but also whether it provides meaningful insights into the uncertainty surrounding those predic-

tions. In the context of inflation, such uncertainty has important economic implications. In his Nobel

lecture, Friedman (1977) argued that higher inflation tends to increase inflation uncertainty, which in

turn impairs the price system’s ability to allocate resources efficiently, thereby generating economic

inefficiency and lower output growth. This theoretical link suggests that reliable inflation forecasts

should reflect underlying economic uncertainty—models whose forecast dispersion responds to shifts

in inflation volatility are likely capturing economically relevant information.

In this section, I assess whether the Random Forest model produces economically meaningful uncer-

tainty signals by relating its internal forecast dispersion to observable forms of inflation volatility.

Unlike traditional univariate benchmarks such as the Random Walk or ARIMA models, which pro-

vide only conditional mean forecasts and assume homoskedastic residuals, the Random Forest model

yields a full predictive distribution. The dispersion of tree-level forecasts offers an intrinsic measure

of forecast uncertainty.

Specifically, I compare the spread of tree-level forecasts to (i) realized inflation volatility and (ii) the

volatility of the model’s own forecast errors, thereby quantifying both the calibration and respon-

siveness of the RF’s uncertainty estimates in the spirit of Naghi et al. (2024). For each forecast

horizon, I compute the interquartile range (IQR) across the ensemble of tree forecasts, defined as

IQRRF
t = ŷRF

t,0.75− ŷRF
t,0.25. The IQR summarizes the middle 50% of the forecast distribution and serves

as a standard measure of forecast uncertainty in both professional surveys and empirical forecasting

studies (e.g., Abel, Rich, Song, and Tracy, 2016; Clements, Rich, and Tracy, 2025).

To evaluate these relationships, I compute a set of complementary statistics that capture three aspects

of forecast uncertainty: its level, calibration, and responsiveness. First, uncertainty levels are sum-

marized by the coverage rate of the IQR, i.e., the share of realized inflation outcomes falling within

the middle 50% of the RF’s forecast distribution—values near 50% imply well-calibrated uncertainty

bands. Second, calibration is assessed through the average ratios of the IQR to realized inflation
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volatility and to forecast error volatility, indicating whether the model’s ex-ante uncertainty scales

appropriately with both fundamental and predictive variability. Finally, responsiveness is measured

by the correlations between the IQR and the two volatility metrics, which reveal whether periods of

higher inflation volatility are associated with wider forecast dispersion.

Table 4: Forecast Uncertainty Metrics for the Random Forest Model

Measure Definition h=1 h=2 h=3 h=4 h=5 h=6 h=7 h=8

Uncertainty levels

Coverage 1
T

∑T
t=1 I

[
π̂RF
t,0.25 ≤ πt ≤ π̂RF

t,0.75

]
0.70 0.78 0.79 0.66 0.82 0.79 0.78 0.84

IQRt π̂RF
t,0.75 − π̂RF

t,0.25 1.18 1.42 1.16 0.97 1.38 1.20 1.28 1.66

Calibration

R1
1
T

∑T
t=1

IQRRF
t

σreal
t

0.40 0.43 0.62 0.48 0.52 0.55 0.55 0.53

R2
1
T

∑T
t=1

IQRRF
t

σ
FE,RF
t

0.54 0.64 0.86 0.65 0.89 0.77 0.80 0.80

Responsiveness

ρ1 corr(IQRRF
t , σreal

t ) 0.32 0.18 0.44 0.27 0.27 0.39 0.25 0.26

ρ2 corr(IQRRF
t , σFE,RF

t ) 0.37 0.22 0.47 0.22 0.27 0.51 0.37 0.39

Notes: The table reports forecast uncertainty measures for the Random Forest (RF) model across horizons h = 1–8.
IQRRF

t denotes the interquartile range of tree-level forecasts. R1 and R2 compare average IQR width to realized and
forecast error volatility, while ρ1 and ρ2 capture the correlation of forecast uncertainty with these volatility measures.
Values near one indicate well-calibrated uncertainty levels; positive correlations imply that forecast dispersion increases
when inflation becomes more volatile.

Table 4 summarizes the resulting measures across forecast horizons. The coverage rates of the RF’s

interquartile ranges lie between 66% and 84% across horizons h = 1–8, indicating that the model’s

uncertainty estimates are somewhat conservative—its forecast bands tend to be slightly wider than

necessary, yet still provide reasonable probabilistic coverage of realized inflation outcomes. While

Clark, Ganics, and Mertens (2025) document systematic undercoverage in SPF-based fan charts,

the RF model achieves more balanced coverage, suggesting that data-driven ensembles can better

approximate true predictive uncertainty. The median IQR width fluctuates between roughly one and

one and a half percentage points, with slightly larger bands at longer horizons (h = 6–8), reflecting

the natural increase in forecast uncertainty over time.

The calibration ratios further confirm that the RF’s forecast dispersion scales proportionately with

both realized inflation volatility and the variability of its own forecast errors. Across horizons, R1

ranges from about 0.4 to 0.6 and R2 from roughly 0.5 to 0.9, suggesting that the model’s internal

uncertainty tracks the magnitude of true and predictive volatility reasonably well. In line with Rossi,

Sekhposyan, and Soupre (2016), who distinguish between realized and expectational uncertainty, the

RF’s dispersion measures align with both realized and forecast error volatility, indicating that its
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uncertainty estimates capture both ex-ante and ex-post components of inflation uncertainty. This

implies that the model’s ex-ante forecast bands neither systematically understate nor exaggerate actual

variability, even at medium and long horizons.

The positive correlations between forecast uncertainty and both realized and forecast error volatil-

ity—ranging from roughly 0.2 to 0.5 across horizons—confirm that the RF’s forecast dispersion is

economically meaningful. Consistent with Abel et al. (2016), who show that forecast dispersion among

professional forecasters rises in periods of heightened volatility, the RF’s IQR-based uncertainty mea-

sures expand when inflation becomes more volatile, reinforcing their interpretation as meaningful

indicators of uncertainty. Moreover, whereas Clements et al. (2025) find that professional forecasters

tend to underreact to rising uncertainty, the RF’s uncertainty measures respond contemporaneously

to changes in realized and forecast error volatility, indicating a more adaptive and data-responsive

updating mechanism.

Finally, following Lahiri and Sheng (2010), who argue that forecast disagreement is informative only

when it comoves with objective measures of uncertainty, the RF model’s IQRs exhibit significant

correlations with realized inflation volatility. This supports the view that the model’s dispersion

reflects genuine uncertainty rather than mechanical variation in forecasts. Taken together, these results

demonstrate that the Random Forest model produces forecast uncertainty estimates that are both

well-calibrated and responsive to underlying inflation dynamics, offering a credible and interpretable

measure of predictive confidence rather than arbitrary statistical noise.

6 Relative Feature Importance

To gain insight into how individual features contribute to the Random Forest’s inflation forecasts, I

compute Shapley values, a widely used interpretability measure from cooperative game theory (see

Štrumbelj and Kononenko (2014) and Lundberg and Lee (2017)). Shapley values decompose each

prediction into additive feature-level contributions relative to a baseline prediction, typically the mean

of the training data. Formally, each forecast ŷi can be expressed as

ŷi = ϕ0 +
∑

j

ϕij ,
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where ϕij denotes the marginal contribution of feature j to observation i. In this application, I

compute Shapley values for every tree in the ensemble and average them across all trees and sample

observations. The resulting mean absolute Shapley values summarize each variable’s average influence

on the model’s forecasts, providing an interpretable measure of relative importance that complements

traditional split-based importance scores (see e.g. Buckmann, Potjagailo, and Schnattinger (2025) for

a related application).
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Figure 4: Five highest mean absolute Shapley values across features for each forecast horizon (h = 1, . . . , 8)

Notes: Each panel displays the five predictors with the highest mean absolute Shapley values for the Random Forest
inflation forecasting model across forecast horizons. Shapley values quantify each variable’s average contribution to the
model’s predictions with higher values indicating stronger influence on forecast outcomes.

Figure 4 displays the five most influential predictors at each forecast horizon based on these mean

absolute Shapley values. The Shapley framework thus provides a transparent decomposition of the

Random Forest’s predictions, directly quantifying how changes in individual predictors affect the

model’s output and revealing how the relevance of different features evolves across forecast horizons.

Across horizons, past inflation (πt, πt−1) remains among the dominant drivers at short horizons,
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consistent with the strong persistence of inflation dynamics. At medium-term horizons (h = 3–5),

cyclical and frequency-domain features—particularly those associated with the bandpass components

(P0.05−0.15, P0.15−0.30) and IMF-based amplitudes—gain prominence, indicating that cyclical patterns

become more predictive further ahead. At longer horizons (h = 6–8), energy-related features (E(πw),

E(IMF1)) and low-frequency components contribute more substantially, suggesting that slow-moving

or structural factors increasingly shape inflation expectations.

Overall, the Shapley analysis confirms that the Random Forest model’s predictive structure is econom-

ically interpretable: short-run forecasts rely primarily on inflation inertia, while medium- and long-run

forecasts draw on cyclical and energy-based information that captures the evolving nature of inflation

dynamics. The investigation of relative feature importance also provides an indirect robustness check

of the feature-engineering approach—if the engineered transformations are informative, they should

exhibit consistently positive Shapley contributions across horizons. This expectation is largely met.

Only the mean energy of the past inflation window, E(πw), never appears among the top five predictors

at any horizon, suggesting that the model attributes less marginal importance to this particular trans-

formation. Nonetheless, its Shapley values remain positive, confirming that it contributes modestly

to the forecasts. The same pattern emerges when importance is computed directly from the Random

Forest via impurity-based measures, underscoring the stability of the model’s feature relevance across

evaluation methods.

7 Concluding Remarks

This paper shows that a minimalist, data-driven framework—relying exclusively on inflation’s own

historical dynamics—can generate forecasts that not only rival but frequently exceed the accuracy of

professional forecasters and well established univariate benchmark models. Rather than introducing a

new high-dimensional dataset, innovative transformation technique, or novel learning algorithm, the

contribution lies in establishing a robust, reproducible, and interpretable univariate benchmark.

The purpose of this paper is not to demonstrate incremental gains across many economies or to tailor

the model to country-specific institutional environments. The United States serves as a natural testing

ground, given its central role in the global macroeconomic and monetary policy landscape and the

extensive use of U.S. inflation forecasts for model evaluation. Starting from this benchmark case
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establishes a clear upper bound on what can be achieved from inflation’s own past dynamics alone.

Should a researcher’s objective be to further enhance predictive performance, the next step would be

to augment the feature set with external macroeconomic or financial indicators, rather than to alter

the core modeling architecture. In this sense, the contribution of the paper is to provide a disciplined

baseline: it isolates the forecasting value of inflation’s intrinsic temporal structure before additional

sources of information are layered on.

The proposed model is not intended to replace more complex, theory-rich, or institutionally curated

forecasting systems; instead, it complements them by offering a transparent and low-cost tool that

responds flexibly to rapid changes in inflation dynamics. By embedding real-time sampling, systematic

feature design, and uncertainty quantification into a unified and operationally simple structure, the

paper provides policymakers and researchers with a practical forecasting benchmark that can serve as

a responsive early indicator, a robustness check against overfitting in richer models, or a baseline for

model comparison in real-time policy environments.
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